40 research outputs found

    How Does Word of Mouth from Different Components Systems Influence Product Sales differently?

    Get PDF
    Online word-of-mouth (WOM) has become an important reference for customers’ online purchase decisions. However, current studies ignore the various effects of WOM in different components, i.e., online reviews and the replies in the question and answer (Q &A) discussion area. To fill such a research gap, this study explores the relationship between WOM in two different forms and product sales. We measure the semantic features and thematic consistency of two forms of WOM and product sales. The findings show that the review component and Q&A component differ significantly in terms of quantity and content richness, with the review component being richer and more voluminous and the Q&A section having less content and relatively less quantity in comparison. Besides, the OLS results suggest that topic consistency has a negative impact on product sales, while the richness characteristics of both have a positive impact on product sales, and that the content richness of the Q&A component has a greater impact on sales than the review component

    Searching for a DNAzyme version of the leadzyme

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00239-015-9702-zThe leadzyme refers to a small ribozyme that cleaves a RNA substrate in the presence of Pb2+. In an optimized form, the enzyme strand contains only two unpaired nucleotides. Most RNA-cleaving DNAzymes are much longer. Two classical Pb2+-dependent DNAzymes, 8–17 and GR5, both contain around 15 nucleotides in the enzyme loop. This is also the size of most RNA-cleaving DNAzymes that use other metal ions for their activity. Such large enzyme loops make spectroscopic characterization difficult and so far no high-resolution structural information is available for active DNAzymes. The goal of this work is to search for DNAzymes with smaller enzyme loops. A simple replacement of the ribonucleotides in the leadzyme by deoxyribonucleotides failed to produce an active enzyme. A Pb2+-dependent in vitro selection combined with deep sequencing was then performed. After sequence alignment and DNA folding, a new DNAzyme named PbE22 was identified, which contains only 5 nucleotides in the enzyme catalytic loop. The biochemical characteristics of PbE22 were compared with those of the leadzyme and the two classical Pb2+-dependent DNAzymes. The rate of PbE22 rises with increase in Pb2+ concentration, being 1.7 h−1 in the presence of 100 ÎŒM Pb2+ and reaching 3.5 h−1 at 500 ”M Pb2+. The log of PbE22 rate rises linearly in a pH-dependent fashion (20 ”M Pb2+) with a slope of 0.74. In addition, many other abundant sequences in the final library were studied. These sequences are quite varied in length and nucleotide composition, but some contain a few conserved nucleotides consistent with the GR5 structure. Interestingly, some sequences are active with Pb2+ but none of them were active with even 50 mM Mg2+, which is reminiscent of the difference between the GR5 and 8–17 DNAzymes.University of Waterloo || Ontario Ministry of Research & Innovation || Natural Sciences and Engineering Research Council |

    Intracellular Detection of ATP Using an Aptamer Beacon Covalently Linked to Graphene Oxide Resisting Nonspecific Probe Displacement

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Analytical Chemistry copyright © American Chemical Society after peer review and technical editing by publisher. To access the final edited and published work see Liu, Z., Chen, S., Liu, B., Wu, J., Zhou, Y., He, L., 
 Liu, J. (2014). Intracellular Detection of ATP Using an Aptamer Beacon Covalently Linked to Graphene Oxide Resisting Nonspecific Probe Displacement. Analytical Chemistry, 86(24), 12229–12235. https://doi.org/10.1021/ac503358mFluorescent aptamer probes physisorbed on graphene oxide (GO) have recently emerged as a useful sensing platform. A signal is generated by analyte-induced probe desorption. To address nonspecific probe displacement and the false positive signal, we herein report a covalently linked aptamer probe for adenosine triphosphate (ATP) detection. A fluorophore and amino dual modified aptamer was linked to the carboxyl group on GO with a coupling efficiency of ∌50%. The linearity, specificity, stability, and regeneration of the covalent sensor were systematically studied and compared to the physisorbed probe. Both sensors have similar sensitivity, but the covalent one is more resistant to nonspecific probe displacement by proteins. The covalent sensor has a dynamic range from 0.125 to 2 mM ATP in buffer at room temperature and is resistance to DNase I. Intracellular ATP imaging was demonstrated using the covalent sensor, which generated a higher fluorescence signal than the physisorbed sensor. After the cells were stimulated with 5 mM Ca2+ for ATP production, the intracellular signal enhanced by 31.8%. This work highlights the advantages of covalent aptamer sensors using GO as both a quencher and a delivery vehicle for intracellular metabolite detection.National Natural Science Foundation of China || Grant No. 81301258, 21301195 Hunan Provincial Natural Science Foundation of China || Grant No. 13JJ4029 Specialized Research Fund for the Doctoral Program of Higher Education of China || Grant No. 20130162120078 Postdoctoral Science Foundation of Central South University and China || Grant No. 124896 China Postdoctoral Science Foundation || Grant No. 2013M540644 International Postdoctoral Exchange Fellowship Program ||Grant No. 20140014 Shenghua Scholar Foundation || Natural Sciences and Engineering Research Council |

    Thioflavin T fluorescence and NMR spectroscopy 1 suggesting a non-G-quadruplex structure for a 2 sodium binding aptamer embedded in DNAzymes

    Get PDF
    Recently, a Na+-binding aptamer was reported to be embedded in a few RNA-cleaving DNAzymes including NaA43, Ce13d and NaH1. These DNAzymes require Na+ for activity but show no activity in the presence of K+ or other metal ions. Given that DNA can selectively bind K+ by forming a G-quadruplex structure, this work aims to answer whether this Na+ aptamer also uses a G-quadruplex to bind Na+. The Na+ aptamer embedded in Ce13d consists of multiple GG sequences, which is also a pre-requisite for the formation of G4 structures. To delineate the structural differences and similarities between Ce13d and G-quadruplex in terms of metal binding, thioflavin T (ThT) fluorescence spectroscopy, NMR spectroscopy and CD spectroscopy were used. Through comparative ThT fluorescence spectrometry studies, we deciphered that while a control G-quadruplex DNA exhibited notable fluorescence enhancement up to 5 mM K+ with a Kd of 0.52 mM, the Ce13d DNAzyme fluorescence was negligibly perturbed with similar concentrations of K+. Opposed to this, Ce13d displayed specific remarkable fluorescence decrease with low millimolar concentrations of Na+. NMR experiments at two different pH values suggest that Ce13d adopts a significantly different conformation or equilibrium of conformations in the presence of Na+ versus K+ and has a more stable structure in the presence of Na+. Additionally, absence of characteristic peaks expected for a G-quadruplex structure in 1D 1H NMR suggest that G4 is not responsible for the Na+ binding. This theory is confirmed by absence of characteristic peaks in the CD spectra of this sequence. Therefore, we concluded that the aptamer must be selective for Na+ and binds using a structural element that does not contain G4.Natural Sciences and Engineering Research Council of Canada, Discovery Grant 303454

    Attaching DNA to Nanoceria: Regulating Oxidase Activity and Fluorescence Quenching

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Applied Materials and Interfaces copyright © American Chemical Society after peer review and technical editing by publisher. To access the final edited and published work see Pautler, R., Kelly, E. Y., Huang, P.-J. J., Cao, J., Liu, B., & Liu, J. (2013). Attaching DNA to Nanoceria: Regulating Oxidase Activity and Fluorescence Quenching. ACS Applied Materials & Interfaces, 5(15), 6820–6825. https://doi.org/10.1021/am4018863Cerium oxide nanoparticles (nanoceria) have recently emerged as a nanozyme with oxidase activity. In this work, we present a few important interfacial properties of nanoceria. First, the surface charge of nanoceria can be controlled not only by adjusting pH but also by adsorption of simple inorganic anions. Adsorption of phosphate and citrate gives negatively charged surface over a broad pH range. Second, nanoceria adsorbs DNA via the DNA phosphate backbone in a sequence-independent manner; DNA adsorption inhibits its oxidase activity. Other anionic polymers display much weaker inhibition effects. Adsorption of simple inorganic phosphate does not have the inhibition effect. Third, nanoceria is a quencher for many fluorophores. These discoveries provide an important understanding for further use of nanoceria in biosensor development, materials science, and nanotechnology.University of Waterloo || Canadian Foundation for Innovation || Natural Sciences and Engineering Research Council || Ontario Ministry of Research and Innovation |

    Surface Science of DNA Adsorption onto Citrate-Capped Gold Nanoparticles

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Langmuir copyright © American Chemical Society after peer review and technical editing by publisher. To access the final edited and published work see Zhang, X., Servos, M. R., & Liu, J. (2012). Surface Science of DNA Adsorption onto Citrate-Capped Gold Nanoparticles. Langmuir, 28(8), 3896–3902. https://doi.org/10.1021/la205036pSingle-stranded DNA can be adsorbed by citrate capped gold nanoparticles (AuNPs), resulting in increased AuNP stability, which forms the basis of a number of biochemical and analytical applications, but the fundamental interaction of this adsorption reaction remains unclear. In this study, we measured DNA adsorption kinetics, capacity, and isotherms, demonstrating that the adsorption process is governed by electrostatic forces. The charge repulsion among DNA strands and between DNA and AuNPs can be reduced by adding salt, reducing pH or by using noncharged peptide nucleic acid (PNA). Langmuir adsorption isotherms are obtained, indicating the presence of both adsorption and desorption of DNA from AuNPs. While increasing salt concentration facilitates DNA adsorption, the desorption rate is also enhanced in higher salt due to DNA compaction. DNA adsorption capacity is determined by DNA oligomer length, DNA concentration, and salt. Previous studies indicated faster adsorption of short DNA oligomers by AuNPs, we find that once adsorbed, longer DNAs are much more effective in protecting AuNPs from aggregation. DNA adsorption is also facilitated by using low pH buffers and high alcohol concentrations. A model based on electrostatic repulsion on AuNPs is proposed to rationalize the DNA adsorption/desorption behavior.University of Waterloo || Canadian Foundation for Innovation || Ontario Ministry of Research & Innovation || Canadian Institutes of Health Research || Natural Sciences and Engineering Research Council |

    DNAzyme Hybridization, Cleavage, Degradation and Sensing in Undiluted Human Blood Serum

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Analytical Chemistry, copyright © American Chemical Society after peer review and technical editing by publisher. To access the final edited and published work see http://dx.doi.org/10.1021/acs.analchem.5b00220.RNA-cleaving DNAzymes provide a unique platform for developing biosensors. However, a majority of the work has been performed in clean buffer solutions, while the activity of some important DNAzymes in biological sample matrices is still under debate. Two RNA-cleaving DNAzymes (17E and 10-23) are the most widely used. In this work, we carefully studied a few key aspects of the 17E DNAzyme in human blood serum, including hybridization, cleavage activity, and degradation kinetics. Since direct fluorescence monitoring is difficult due to the opacity of serum, denaturing and nondenaturing gel electrophoresis were combined for studying the interaction between serum proteins and DNAzymes. The 17E DNAzyme retains its activity in 90% human blood serum with a cleavage rate of 0.04 min–1, which is similar to that in the PBS buffer (0.06 min–1) with a similar ionic strength. The activity in serum can be accelerated to 0.3 min–1 with an additional 10 mM Ca2+. As compared to 17E, the 10-23 DNAzyme produces negligible cleavage in serum. Degradation of both the substrate and the DNAzyme strand is very slow in serum, especially at room temperature. Degradation occurs mainly at the fluorophore label (linked to DNA via an amide bond) instead of the DNA phosphodiester bonds. Serum proteins can bind more tightly to the 17E DNAzyme complex than to the single-stranded substrate or enzyme. The 17E DNAzyme hybridizes extremely fast in serum. With this understanding, the detection of DNA using the 17E DNAzyme is demonstrated in serum.University of Waterloo || Natural Sciences and Engineering Research Council || Foundation for Shenghua Scholar of Central South University|| National Natural Science Foundation of China || Grant No. 21301195 Fellowship from the China Scholarship Council || CSC, Grant No. 20140637011

    Recent progress in nanomaterial-enhanced fluorescence polarization/anisotropy sensors

    No full text
    The final publication is available at Elsevier via https://doi.org/10.1016/j.cclet.2019.06.005. © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/As a promising signaling transduction approach, fluorescence polarization (FP)/fluorescence anisotropy (FA), provides a powerful quantitative tool for the rotational motion of fluorescently labeled molecules in chemical or biological homogeneous systems. Unlike fluorescence intensity, FP/FA is almost independent the concentration or quantum of fluorophores, but they are highly dependent on the size or molecular weight of the molecules or materials attached to fluorophores. Recently, significant progress in FP/FA was made, due to the introduction of some nanomaterials as FP/FA enhancers. The detection sensitivity is thus greatly improved by using nanomaterials as FP/FA enhancers, and nanomaterial-based FP/FA is currently used successfully in immunoassay, and analysis of protein, nucleic acid, small molecule and metal ion. Nanomaterial-based FP/FA provides a new kind of strategy to design fluorescent sensors and establishes innovative analytical methods. In this review, we summarize the scientific publications in the field of FP/FA sensor in recent five years, and first introduce the recent progress of FP/FA sensor based on nanomaterial. Subsequently, the various analytical applications of FP/FA based on nanomaterial are discussed. Finally, we provide perspectives on the current challenges and future prospects in this promising field.The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (No. 21822407, 21405163) and the top priority program of “One-Three-Five” Strategic Planning of Lanzhou Institute of Chemical Physics, CAS

    Synthesis strategies of covalent organic frameworks: An overview from nonconventional heating methods and reaction media

    No full text
    Covalent organic frameworks (COFs), as an emerging class of porous crystalline materials constructed by covalent links between the building monomers, have gained tremendous attention. Over the past 15 years, COFs have made rapid progress and substantial development in the chemistry and materials fields. However, the synthesis of COFs has been dominated by solvothermal methods for a long time and it usually involves high temperature, high pressure and toxic organic solvents, which created many challenges for environmental considerations. Recently, the exploration of new approaches for facile fabrication of COFs has aroused extensive interest. Hence, in this review, we comprehensively describe the synthetic strategies of COFs from the aspects of nonconventional heating methods and reaction media. In addition, the advantages, limitations and properties of the preparation methods are compared. Finally, we outline the main challenges and development prospects of the synthesis of COFs in the future and propose some possible solutions
    corecore